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Cyclotomy With Short Periods 

By D. H. Lehmer and Emma Lehmer 

Abstract. This paper develops cyclotomy for periods of lengths 2, 3 and 4 for moduli which 
are primes and products of two primes. 

1. Introduction. Cyclotomy for a prime modulus p = ef + 1 goes back to Gauss 
who defined f-nomial periods qJ in terms of a primitive root g as follows: 

f-I 

7a= 2 g',+j where = exp(2 7Ti/p). 
i=O 

Although the ordering of the 71's depends on the primitive root g, the equation 

4p(x) = 0 of degree e satisfied by the 71's is independent of g. In the last half century 
cyclotomies have been developed for small values of e < 30. 

Kummer [4] considered cyclotomy for a composite modulus n in which case ef is 
Euler's p(n). In general, n will not possess a primitive root g, and a suitable 
generator must be chosen. In case n is squarefree such a cyclotomy always exists 
although not uniquely. For references see [7]. 

This paper is concerned with small values of f rather than e. One of the three 
possible cyclotomies for f = 2 was considered by Sylvester [9] in 1879. 

Our interest in the problem for f = 3 was rekindled by Daniel Shanks, who was 
interested in sums of k th powers of the trinomial 

71 = D + Da + DaD, where =exp(2Tri/n), a3 1 (mod n) 

and its conjugates in connection with some third order recurring sequences used in 
tests for primality [1]. We noted and proved that Sk = Yqk is independent of the 
choice of a for n = pq, where p < q are primes and k < Fn. 

This result was presented at the 1981 West Coast Number Theory Conference, 
where we learned that Gurak [2] has recently considered the period equation 

4p(x) = 0 and the corresponding Sk for p a prime and f = 2. Since then he 
generalized his results to other polynomials and to n = pq in [3]. 

In this paper we will consider in detail the cases of f = 2, 3 and 4 for p and pq and 
for all values of a for which af _ 1 (mod pq). We will give formulas for the 
coefficients and for the sums of powers of the roots of the cyclotomic polynomials 
and for their discriminants. 

The several illustrative examples in this paper were computed by an exact 
technique explained in the final section. 
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2. The case f = 2. Sylvester [9] took for the periods the real number 

9 = n + IT-' = 2 cos(27r/n) 

and its conjugates. 
Here we take for the periods the complex number 

= n + ,n D where a2 I(mod n) 

and its conjugates, mentioned briefly in [9, pp. 336-338]. For n = pq the two values 
of a =# -1 can be characterized by 

f-1 (modp) a fi (mod p) al-l 1 (mod q) a2 -1 (mod q). 

We first look at the sum of the k th powers of the periods. This we denote by 
Sk(p) in case n = p and a = -1. For n = pq we have S( pq - I), S( pq, al) and 
Sk(pq, a2). 

THEOREM 1. If n = p, so that a = -1 andf = 2, we have 

Sk(p) = -2k-I +P (k). 
2 v-k/2 (mod p) 

Proof. 

2Sk( p )=2 ( X} ) =2(v):C = - Pk ] 

where 

82v= I1 if k_2v(modp), 
k {O otherwise. 

Hence the theorem follows. 
The polynomial whose roots are the periods can be written 

e 

( 1 ) 4p (X) II (x (? + pV) )= Xe + aix 1ex + +ae. 

V= 1 

The coefficients ar are determined from Newton's formulas. Gauss (see [9]) found 
them explicitly as follows: 

(2) a - (_ I1)[r/2] ( e-[(r + 1)/2] 

where [y] is the greatest integer ? y. 
The discriminant of 41p(x) is p(p 3)/2 (Lehmer [5]). 

3. The Case n = pq. The analogue of Theorem 1 is 

THEOREM 2. Iff = 2, then 

Sk(pq,-) 2k-I P 
p 

(k) q k 
y 

pq 
(k/) 

-=k/2 (mod p) A-k/2 (mod q) 

where (kk2) = 0 if k is odd. 
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Proof. As in Theorem 1 we have 

2Sk( pqg 1) 
k 

2 (j2pk k )A 
Io=O ( j, n)1= I P=O 

where 

AP = 11(n) = u( pq) = I if (2v -k, n) = 1, 

AP = -(p - 1) if p (2v - k), qt(2v -k) 

AP = -(q -1) if q (2v - k), P (2v -k), 

A, = (p - 1)(q - 1) if pq 1(2v - k). 

Substituting this into 2 k=0(k )AP, gives the theorem. 
We next take up the case Sk( pq, a). We may suppose that 

a -1 (mod p) and a-1 (mod q), 

since the second cyclotomy can be obtained by an interchange of p and q. 
If a is even, we can replace a by pq + a, and therefore we can assume that 

a+ 1 =2Xp and a-1 =2,uq. 

Hence 

tpq + pq = pq( + = q + = + t-)=t A 

since 1 + q,u = 1 + (a - 1)/2 = (a + 1)/2 = Xp. Therefore, withp' - (p - 1)/2, 

q-1 p, q-1 
Sk(pq, a) q- k F k= -Sk(P) if qjk, 

q Sk(P) q - 
q-IS)) fqIk 

By Theorem 1 this gives 

THEOREM 3. 

22v-k/2 (mod p) k 

where 

k 1 if q I k, 
k t 0 otherwise. 

COROLLARY. The first q - 1 values of Sk( pq, a) and the first q - 1 coefficients of 

4pq(a, x) do not depend on q so that 

Sk( pq1, a) = Sk( pq2 ,a) for k < q1 < q29 

and 

c(pqY) = cp(pq2) for v < q, < q2, 

where cp( pq) are the coefficients of 4pq(a, x). 

THEOREM 4. Let 4pm)(y) be the polynomial whose roots are the mth powers of the 
roots of 4p(x). Then 

(3) 4pq(a, x) = / p(X). 
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Proof. The roots of 4p(x)4ipq(a, x) are 0,gQ, v = 0, 1,. . . ,q -1; = 1, 2,. . ,p'. 
The roots of 4pq)(y) arey = OI, O2-. * , 0;. 
The roots of Apq)(Xq) are therefore x = 0,Dq, v = 0,1,... ,q-1; = 1,2,... ,p'. 

Hence the theorem follows. 
Regarding the coefficients of 4pq(a, x) we have 

THEOREM 5. Let 
d 

(4) 4pq(a, x) =2 CkXdk, d = (ppq)/2 p'(q- 1), 
k=O 

p 

ip(m)(X) = x 
s= 

Then the coefficients cr satisfy the recurrence 

p1 

(5) cr = s - (1)+[s/2 P' [sI/2] s) cr+ a+ q 

where a(q) = 0 if t is not an integer. 

Proof. By Theorem 4 we can write 

4pp(x)4ipq(a, x) = Apq)(Xq). 

Identifying the coefficients of XP'q-r on both sides and using (2),we obtain (5). 
Another expression for cr coming out of Theorem 4 is 

THEOREM 6. Let 

[pXPApe(X/X)]' = bnXn. 
n=O 

Then 

cr = br + a(q) br + a(q)b + 

Proof. This follows from (3) and (4). Thus Theorem 6 gives an easy way to get the 
coefficients of 4pq(a, x) once the coefficients bn have been computed. 

THEOREM 7. If nI = pqI and n2 = pq2 for two primes q1 < q2, then the two 
polynomials 'pq,(a, x) and 4pq2(a, x) have the same q1 first and last coefficients and 
moreover 

(6) Sk(pql, a) = Sk(pq2, a) = Sk(p) for 0 < k < ql. 

Proof. By (5) with k < ql, Cr does not depend on q, so the first q1 coefficients are 
the same for #pq,(a, x) and #pq2(a, x). If we replace x by l/x in (3) and multiply 
both sides by XP '(q- 1), this has the effect of reversing the order of the coefficients in 
all three polynomials in (6). The first q coefficients of XP'(q - ')pq,(a, x-1) and of 
XP '(q2- 1)pq2(a, x-l) are now the last q coefficients of #pq,(a, x) and #pq2(a, x), and 
the theorem follows from Theorem 3. 

We note that Eq. (6) is an example of a solution of the multigrade Terry-Escott 
problem [6] in cyclotomic integers. 
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In the special case of p = 3, +3(X) = X + 1 and by (3) 

43q(a, x) = (xq + 1)7 (X + 1) = Qq(-X) 

whose roots are -vq' 
In casep = 5,p' = 2 and 45(x) = x2 + x-1, 

(q)(Xq) =X2q + Lxq - 1, whereLq ((I + 5 )/2 + ((I )/2 

and (5) becomes 

C = -C + C + Lq if k = q, 
Cr Cri +Cr2+{0 otherwise. 

Thus the coefficients of 45q(a, x) are 

1,-1,2,-3,5,.. ., Fq Fq Fq-19 Fq2 .. 3,2,1,1, 

where F,n is the n th Fibonacci number. This was done for a general q in Lehmer [8]. 
In casep = 7, p' = 3, 

{'7(X) =X3 + x2-2x-1, and +7q)(Xq) = X3q + a(q)X2q + a(q)xq-1, 

where 

a(q) _Sq(7) = Iq -2 7 q(v) 
v =- q/2(mod 7) 

2a2= ) -(S2q(7). 

By (5) 

[al(q) if k =q, 
Cr = -Cr_ + 2cr-2 + Cr-3 + (q) 

For small values of q the a(q) and a(q) are tabulated below together with a few of the 
polynomials 4pq(a, x). It will be noticed that the constant term is equal to one. This 
follows from (2) and the fact that the product of the roots of 4pq(a, x) is the same as 
the product of the roots of 4p(x). 

q a(q) a(q) 

3 4 -11 
5 16 -57 

11 639 -7372 
13 2094 -37221 
17 22220 -948823 
19 72220 -4790529 

4i15(4, x) = x4-X3 + 2X2 + X +1 

4'2,(13, x) = x6-x5 + 3x4 + 5x2-2x + 1, 

4/35(6, x) = x12 -x + 3x10-4x9 + 9x8 + 2x7 + 12X6 + x5 + 25x4 

-11x3 + 5x2 - 2x + 1, 
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)77(34, x) = 30 - x29 + 3x28 - 4X27 + 9x26 - 14x25 + 28X24 - 47X23 + 89X22 

- 155x21 + 286x20 + 132x19 + 285x18 + 265x17 + 437x16 + 378x 15 

+761x14 + 432x13 + 1468x12 + 157x11 + 321 1x10 - 1429x9 + 636x8 

-283x7 + 126X6 - 56x5 + 25x4 - Ilx3 + 5x2 - 2x + 1, 

),1(27, x) = X36 - x35 + 3x34 - 4x33 + 9X32 - 14x31 + 28x30 - 47X29 + 89X28 

- 155X27 + 286X26 - 507x25 + 924x24 + 442X23 + 899X22 + 909X21 

+ 133IX20 + 1386x19 + 2185x18 + 1918x17 + 3838x16 + 2183x15 

+7411x14 + 793x13 + 16212x12 - 7215x11 + 3211x10 - 1429x9 

+636x8 - 283x7 + 126X6 - 56x5 + 25x4 - Ilx3 + 5x2 - 2x + 1. 

The discriminant of Sylvester's 4pq(X) is known to be p(p-2)(q- 1)/2q(p- 1)(q-2)/2 

(Lehmer [5]). The discriminant of 4pq(a, x) cannot be given explicitly since it may 
contain other factors besides p and q. However, we have the following theorem. 

THEOREM 8. The discriminant A of 4pq(a, x) is divisible byp(P3)(- l)/2q(-2)(P-1)72 

Proof. Among the differences of the roots in 

(Vil- 0av2tJ jr 
1, 2,. ,p'1, 

there are two special cases: 
Case I. If v, = v2, the product flOv(Y-' i2) iS the discriminant of Qq(x) raised to 

the power p', since I IIQ 1= 1. Hence q(q- 1)p' divides A. 
Case II. If j, = j2, then the product is the discriminant of 4p(x) raised to the 

power q - 1, since the product fIIT = 1. Therefore' A is also divisible byp(p-3)(q- 1)/2 

Hence the theorem. 
The following table gives the discriminants of 4pq(a, x) and the factors supplied 

by the theorem. 

Polynomial l Discriminant j Theorem 8 

CM, x) 223252 3252 

C5019(1 X) 5 3 5 3 

421(8, x) 75 75 

21(13, x) 3374132 3374 

435(6, x) 59781816 5978 

435(29, x) 567101310 56710 

We note that the constant term of these polynomials is always 1. This follows 
from the fact that e is even and, since 

=p 
= 

q + pa 
= 

4pq(- - tpaq1) 

the product over all conjugates gives 

N(Tpq + tpq) = Qpq(-1)- (Xp( - 1)(Xq - 1) =1 
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3. The Case f = 3. For this section we will need the following simple lemma. 

LEMMA. Let f(x, y) = (k - 3(x + y)/2)2 + 3(x - y)2/4. Then inside and on the 
boundary of the triangle formed by the vertices (0, k), (0, 0), and (k, 0) we have 

max f(x, y) = k2. 
Proof. It is easily seen that 

f(0, k) = f(0,0) = f(k,0) = k2. 
Next we see that 

(7) a - aa =-6 
ax2 ay 2 

Therefore, inside the triangle, f(x, y) does not attain a maximum. On the interior of 
the sides (7) still holds, so that f(x, y) has no maximum there either. Hence f(x, y) 
attains its maximum k2 at the vertices of the triangle. Hence the Lemma. 

We begin our discussion with the case of n = p = 3e + 1. The periods are in this 
case 

+ a+ ~a2 
,-p , p P 

and its conjugates. Here a is either one of the two solutions of 

a2 + a + 1 _0 (mod p). 

We first look at the sum Sk( p) of the k th powers of the periods. 

THEOREM 9. If k < F,/ then 

) -3k- 1+ P3(3m)(2m if ik =3m, 

S3k otherwise. 

Proof. We have 

=l ( DP + ( tp + D )) = 
k 

( Da + Da2)k-V 

k kva (k A )?v+aX+a2(k-A-V) 

Replacing D by t (j = 1,2, .. . ,p -1) and summing overj, we get k k ~V) ~ +a (v+a2(k a2(k- -v) 

( 8 ) V ~= 0 A = 0J- 

The value of the inner sum overj is 

|P- Iifp I v + aX + a2(k-X-v), 

{-1 otherwise. 

Since 

?0 ( =) (kX) 
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we have 
(9) 3Sk(p) = _3k +pTk, 

where 

Tk= ~ (k)kf(kAv) v+aX+a2(k-v-X)=O(modp). 

The condition under the summation, using the fact that a3 = 1 (mod pj and 

a2 + a + 1 0 (mod p), can be replaced by 

X-a(v + k/ (a-1)) (mod p) 

_ av-(a-1 )k/3 (mod p) 

or 
a(3v-k)=(3X-k) (mod p). 

Cubing both sides, we have 

(3v - k)3 - (3X - k) 0 (mod p). 

That is 
p I (v-X) or f(v, X)-0 (mod p), 

where f(v, X) is the function defined in the lemma. Using the lemma and the fact 

that v < k, X < k and the assumption that k < Vpf, it follows that p cannot divide 

either v - X or f(v, X) except when v = X or f(v, X) = 0. The vanishing of f(v, X) 

implies v = X and k = 3v. Therefore Tk consists of a single term and in fact is 

T=( k/ k(/ k/3/ ( m )(m) if k 3m, k k/3 \k,/31L otherwise. 

The theorem now follows from (9). 
Theorem 9 now allows us to calculate the first A coefficients Ck of 

e 

4 ( a, x) = CkX e-k 

k=O 

by means of Newton's formula 
k 

(10) kCk = 2 Sv(Pp)Ck- 
v= I 

The first nine coefficients which are valid for all primes p = 3e + 1 > Lk are 

tabulated below: 

k Ck Lk 

0 1 

1 1 
2 2 
3 -(2p - 14)/3 
4 -(2p - 35)/3 7 
5 -(4p - 91)/3 13 
6 (2p2 - 73p + 728)/9 13 
7 (2p2 - lISp + 1976)/9 31 
8 (4p2 - 272p + 5434)/9 43 
9 -(4p3 - 354p2 + 11298p - 135850)/81 43 
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The coefficients Ck for k = 0 to 5 were given by Gurak [2]. He also proved that Ck is 
a polynomial in p of degree [k/3]. We can sharpen this result by giving 

THEOREM 10. If k < VE then 

Ck = bkp[k/3 + o(p[k/313- 

where b3m = b3m?1 = b3m+2/2 = (-2/3)m/m!. 

The proof is by triple induction using (9). The first few polynomials and their 
discriminants are as follows: 

p a 4p(x) 
7 2 x2+x+2 

13 3 x4 + x3 + 2x2-4x + 3 
19 7 x6 + x5 + 2x4-8x3-x2 + 5x + 7 
31 5 x10 + x9 + 2x8 - 16x7 - 9x6 - 11X5 + 43x4 + 6x3 + 63X2 + 20x + 25 
37 10 x'2 + xI' + 2x'0 - 20x9 - 13x8 - 19x7 + 85X6 + 51x5 + 94x4- 2x3 

-13X2 - 77x + 47 
43 6 x14 + x'3 + 2x'2 - 24x - 17x'0 - 27x9 + 143x8 + 81x7 + 83X6 

-209x5 + 163x4 + 88x3 + 235X2 - 168x + 79 

p ILApI 
7 7 
13 32133 

19 72112195 

31 514319672 

37 37114721492211222324332 

43 4313792251230723372823210332 

For n = pq, where p and q are primes of the form 6m + 1 the periods are 

(11)~~~~~~~~~ q + Da + q;a 

and its conjugates. Here a is a solution of a3 =1 (mod pq). There are four solutions 
with a z 1 (mod p). If a is replaced by a2 (mod pq) then (11) remains unaltered. 
Hence there are just two values of a available, a1 and a2 such that a 2 i a2 (mod pq). 

For example if pq = 91, the four solutions are 9, 16, 74 and 81 (mod 91). We can 
take al = 9 and a2 = 16. Without loss of generality we can choose p to be that 
prime for which 

(12) a, a2(modp) and a,-a,2(modq). 

We begin by considering the sum Sk( pq, a) of the kth powers of the periods for 
a = a, and a = a2. If we examine the proof of Theorem 9 and replace p by pq, we 
find that (8) becomes 

(13) 3Sk(pq, a) = , (k)(k- ) 2 4q(av,X) 
V=0 ~~(j, pq)1 
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where 

T(a , X) = v + aX + a2(k - v - X) 2v + X - k + a(2X + v - k) (mod pq). 

Now take a a, and a = a2. It is easily verified from (12) that 

T(a, v, X)= (a2, v, X) (mod p), 

a,T(a1, v, X) a2T(a2, X, v) (mod q), 

and 

(k k)(- ) ( )(k - ) 

hence we have by (13) 

THEOREM 1 1. 

Sk(pq, a,) Sk(pq, a2) (mod pq). 

We can strengthen this theorem for k < ,p-q as follows: 

THEOREM 12. If k < p-q, then Sk(pq, a,) = Sk(pq, a2). 

Proof. The actual difference between Sk( pq, a,) and Sk(pq, a2) can arise only in 
the cases in which 

T(a,,X) 0 (mod pq). 

Replacing p by pq in the last part of the proof of Theorem 9, we find that if 
k < p4,q the only contribution occurs when k = 3m and v = X = m, and that this 
contribution is 

3m 2m 

which does not depend on the value of a, and a2. The theorem follows. 

COROLLARY. The first Jp? coefficients of 4pq(aj, x) are the same as those of 
Ppq(a2, x). These two polynomials are congruent modulo pq by Theorem 11. 

Proof. This follows from Newton's formula (10). 
We next give an example of Theorem 12 for pq - 91. We let 

9IDk = Sk(919) - Sk(91,16) and 9Idk= Ck(91,9) - Ck(91,16) 

k Sk(91,9) Dk Ck(91, 16) dk 
1 1 0 -1 0 

2 3 0 -1 0 
3 151 0 -49 0 
4 -1 0 51 0 
5 -54 0 60 0 
6 2331 0 800 0 
7 -468 0 -855 0 
8 -2153 0 -1148 0 
9 43207 0 -5098 0 

10 -17022 0 5795 0 
11 -59135 11 8093 1 
12 864911 0 12180 -1 
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13 -505842 0 -16002 -1 
14 -1515336 1092 -18667 29 
15 18108456 0 -14901 -27 
16 -14114393 -4368 30577 -291 
17 -37682369 49504 1760 163 
18 390775617 -18 -13345 483 
19 -376953425 -260338 -13354 296 
20 -918400306 1705440 28188 -334 
21 8616559263 -3990 19047 -474 
22 9736808331 10147137 8804 -54 
23 -22043146317 51482970 -4089 129 
24 192976186783 -425040 2367 2 

4. The Case f = 4. If p is a prime, then the solutions of 

a4 = 1 (mod p) with a ? +-1 (mod p) 

are ' a, where a2 -1 (mod p). Therefore the periods are 

(14) n = D~~~~~ + Dp + Da + g;a (14) 

and their conjugates. Now 
k 

(15) 17~k = (tp + tP )>k (ta + fa)k- V (15) 77p 
V-O 

k v) k v 

k P) (r2r)( k - );rv +a(2s-k+x,) 

v=O r=O s=O 

Summing qk over its conjugates, we get 

4Sk(p, a) k v k ( )()(k )[l + p8a(k2- )] 
v=O r=O s=O 

where 

I if i-j (mod p), 
{0 otherwise. 

Since 

z E z ( v ) k-r) v )=4 4k, 
v=O r=O s=O 

we have 

THEOREM 13. Iff 4 and p is a prime, then 

4Sk(p, a) -4 ?PVk, 

where 
k v - 

Vk= 2 2 (k)()(k v), 2r-v -a(k-v-2s)(modp). 
v=O r=O s=O 
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It remains to evaluate Vk. Although we cannot do this in general we have the 
following theorem. 

THEOREM 14. If k < fj, then 

Sk = _4k-l +l if kis even, 

0 O otherwise. 

Proof. The condition under the sum defining Vk when squared becomes 

(16) (v - 2r)2 + (k-v -2s)2 -O (mod p). 

Since 0 ? r < v and 0 ? s < k - v, the largest value of (v - 2r)2 + (k - v - 2s)2 

with v fixed is obtained with r 0 O and s = 0. The largest value of v2 + (k - V)2 is 
obtained for v 0 O or k and is in fact k2. But p > k2. Hence the only way to meet 
condition (16) is to have v= 2r and k - v 2s. If k is odd, then v is odd, but 
v = 2r. Hence the condition is contradictory and so 

Vk = O if k is odd. 

When k is even and v = 2r we have 

k2 k/2 22 

k r?2(2r)( r )(k/2-r) (k/2) r=( r ) (k/2) 

Hence the theorem. 
The coefficients can now be obtained from Newton's formulas and as in the case 

of f= 3 can be expressed as polynomials in p of degree [k/2]. The first few 

coefficients are 

k Ck 

1 1 

2 -(p - 5)/2 
3 -(p - 15)/2 
4 (p2 - 28p + 195)/8 
5 (p2- 48p+663)/8 (p >13) 
6 -(p3 - 69p2 + 1655p - 13923)/48 (p > 13) 
7 _(p3 - 99p2 + 3599p - 49725)/48 (p > 37) 

The first few polynomials for f = 4 are given below: 

p 4P(x) 

5 x + 1 
13 x3 + X2-4x + 1 
17 x4 + x3-6x22x? +1 
29 x7 + X6- 12x5-7x4 + 28x3 + 14X2 -_9x + 1 

37 x9 + x8 - 16x7- 11X6 + 66x5 + 32x4 -73x3-7X2 + 7x + 1 
41 x10 + x9- 18x8- 13x7 + 91X6 + 47x5- 143x4-7x3 + 72X2-23x + 1 
53 X13 + X12 - 24x1 - 19x10 + l90x9 + 116x8 - 681x7 - 246X6 + 738x5 

+215x4 - 291x 3- 68X2 + lOx + 1 
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61 x'5 + x'4 - 28x'3 - 23x'2 + 276x" + 182x'? - 1193x9 - 592x8 
+2307x7 + 956X6 - 1721x5 - 908x4 + 316x3 + 262X2 + 42x + 1 

73 x'8 + x'7 - 34x'6 - 29x'5 + 435x'4 + 311x'3 - 2671x'2 - 1551x" 
+8348x'0 + 3867x9 - 13106x8 - 4608x7 + 9365x6 + 1994x- 2859x4 
-250x3 + 224X2 + 32x + 1 

The corresponding discriminants are as follows: 

p AP 
13 132 

17 22173 
29 172296 

37 312378432 
41 -36419832 
53 234531283231727192 

61 1 11061145992 

73 -367317557214592379725693294632 

Just as in the case of f = 2, these polynomials for f = 4 all have constant term 1. 
This follows from 

'Pq + q+ + g;a = ;a(_ 1 
- g;a-l_)(l 

- 
_a+1) 

so that N('q) = Qpq(-) =1. 
We next take up the case of n = pq, where p q 1 (mod 4) are distinct primes. 

We now have two values of a, say a, and a2, with a, Z -a2 for which 

a2 = -i (mod pq), with a l I (mod pq). 

We can choose p to be that prime for which 

(17) aI-a2 O (mod p) and al + a2 O (mod q). 

For example, if pq 65, we can choose al = 8 and a2 = 18, p = 5, q = 13. 

THEOREM 15. For all values of k 

Sk(pq, a,) Sk(pq, a2) (mod pq). 

Proof. If we examine the proof of Theorem 13, we see that (15) holds when p is 
replaced by pq, that is 

(18) 4Sk(pq, a) = E (k)(r)(k sv) j(a,v,r,s) 

v,r,s (j,pq)=I 

where T(a, v, r, s) = 2r - v + a(2s + v - k). 

Letting a = a, and a2, we find from (17) that 

(T(a, v r, s) T(a2, v, r, s) (mod p), 

a1T(aj, v, r, s) -T(a2, k - v, s, r) (mod q) 

and that 

(k)(v)(k- v 
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is unaltered by the substitution 

v, r, 

Hence Sk(pq, a,) Sk(pq, a2) modulo p and modulo q. 

THEOREM 16. If k < 0-q, then 

Sk(pq, a,) Sk(pq, a2). 

Proof. Since the inner sum in (18) depends only on whether T(a, v, r, s) is prime 
to pq, divisible by p or q or pq, most of the terms in (18) are not changed when al is 
replaced by a2. In fact by (19) it is only when 

T(a, v, r, s) _ O (mod pq) 

for a, or a2 that any change occurs. By (16) we have 

(v- 2r)2 (k - v - 2s)2 (mod pq). 

But since 

(- 2r)2 + (k - v - 2s)2 < k2 

it follows that since k2 < pq 

(20) v = 2r and k-v = 2s. 

If we assume that 

T(a1,p,r,s)-=0(modpq) and T(a2, ar,s)Z0(modpq), 

then v - 2r 0(mod p). But this contradicts (20). Hence in (18) T(a, v, r, s) makes 
the same contribution in (18) for a = al and a = a2. 

Theorem 16 implies that the leading Jpq coefficients of the two polynomials 
4pq(a1, x) and 4pq(a2, x) are the same. Moreover, the two polynomials are con- 
gruent modulo pq by Theorem 15. We illustrate this by giving 465(8, x) and 

41.,(13, x) and the differences between the polynomials for the two values of a. 

465 (8, x) = -X" - 25x'0 + 25x9 + 196x8 - 170X7 - 571X6 

+350x5 + 586x4 - 170X - 9OX2 -x ? 1, 

465(18, x) - 465(8, x) = 65x2(x - 1), 

/85(13, x) = x6-xl5 - 33x'4 + 33x13 + 392x12 - 375x' -2107x10 

+ 1886x9 + 5305x8 - 4506x7 - 5677x6 + 5235x5 + 1412x4 

-2398x3 + 732x2 - 69x + 1, 

485(38, x) - 485(13, x) -85x(5x4 - 5X3 - Ix2 + lOx - 1). 

The discriminants of these polynomials are 

A65(8) 
- 

2851313157728532 

A65(l8) - 59131147482728632 

A 85(13) = 512131617151574187 12 

A85(38) = 512132171547229324634557276032 
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5. Computational Methods. The routines employed in the calculation of Sk, 4lX(x) 
and An are based on the representation of the cyclotomic integer 

Al ,1 + Al2 ? .+ +A n 

by the vector 

(AL, A2,...,A,) 

This vector is reduced when A, = 0, and the reduction is accomplished by simply 
writing the replacement instruction 

Ai = 
Ai,-At? l (l)n). 

Rational integers are recognized by having all their components A. forj ? n equal to 
each other when n = p, the value of the integer being -A,. For n = pq, the condition 
is that there be three sets of equal components represented by AP, Aq and A1, the 
value of the rational integer in this case being A ,-AP- Aq The period such as 

- = D + Da + ,a + Da . 

for example, is simply a very sparse vector, and so is the difference between two 
periods. The multiplication of a normalized cyclotomic integer by a period (or by the 
difference between two periods) is reduced to the adding or subtracting of the 
components of the first vector. This can be done in very few operations on a parallel 
machine. 

The polynomial A,,(x) is the eth term of the sequence G1(x), G2(x), G3(x) formed 
recursively by 

Go(x) 1, G,(x) =(x - )Gk-I(X 

This method of producing a polynomial from its roots is very much cheaper than 
the use of symmetric functions, especially when the multiplication method just 
described is employed. 

To calculate S,.(n, a), using only addition, one uses the multiplication algorithm 
described above to produce qk from qk I and then adds the corresponding compo- 
nents. 

To compute the discriminant A,, of J,,(x) use was made of the factorization 

A,,= P 1P2 ..Pe- I 

where PJ is the norm of the difference between r and one of its conjugates. 
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